CaGIS is the official publication of the Cartography and Geographic Information Society. The Society supports research, education, and practices that improve the understanding, creation, analysis, and use of maps and geographic information. The CaGIS journal implements the objectives of the Society by publishing authoritative peer-reviewed articles that report on innovative research in cartography and geographic information science.
The new “Handbook of Geospatial Artificial Intelligence” edited by Drs. Song Gao (University of Wisconsin-Madison), Yingjie Hu (University at Buffalo), and Wenwen Li (Arizona State University) is now published and is available at the website of Taylor & Francis and a preview of the book is available here.
This handbook covers key fundamental concepts, methods, models, and technologies of GeoAI and discusses the recent advances, research tools, and applications that range from environmental observation and social sensing to public health and disaster responses. We hope this book can provide an organized resource for educators, students, researchers, and practitioners learning and using GeoAI.
By Philipe A. Dias, Thomaz Kobayashi-Carvalhaes, Sarah Walters, Tyler Frazier, Carson Woody, Sreelekha Guggilam, Daniel Adams, Abhishek Potnis, Dalton Lunga
Dr. Hu was recently featured in the Alumni Spotlight of the Department of Geography at UCSB. Yingjie is very grateful for the academic training he received from UCSB Geography, and looks forward to continuing contributing to addressing societal challenges, training next-generation scholars, and serving communities.
Dr. Yingjie Hu was invited to join the editorial board of the International Journal of Geographical Information Science (IJGIS). IJGIS is a flagship journal for GIScience research, and it covers research topics including:
Innovations and novel applications of GIScience in natural resources, social systems and the built environment
Relevant developments in computer science, cartography, surveying, geography, and engineering
Fundamental and computational issues of geographic information
The design, implementation and use of geographical information for monitoring, prediction and decision making
Yingjie looks forward to continuing contributing to IJGIS and the GIScience community!
Social media messages posted by people during natural disasters often contain important location descriptions, such as the locations of victims. Recent research has shown that many of these location descriptions go beyond simple place names, such as city names and street names, and are difficult to extract using typical named entity recognition (NER) tools. While advanced machine learning models could be trained, they require large labeled training datasets that can be time-consuming and labor-intensive to create.
GPT models, such as GPT-3, ChatGPT, and GPT-4, are large-scale language models (LLMs) and foundation models that have received substantial attention recently. Taking just a few examples as the instruction (called a prompt), a GPT model is able to generate text that reads as if it was written by humans. While they are powerful, the current applications of GPT models are largely limited to conversation and text generation, and their social implications are controversial.
In this work, we aim to harness the power of GPT models for social good and propose a method that fuses geo-knowledge of location descriptions and a GPT model, such as ChatGPT and GPT-4. The result is a geo-knowledge-guided GPT model that can accurately extract location descriptions from disaster-related social media messages. Also, only 22 training examples encoding geo-knowledge are used in our method. We conduct experiments to compare this method with nine alternative approaches on a dataset of tweets from Hurricane Harvey. Our method demonstrates an over 40% improvement over typically used NER approaches. The experiment results also show that geo-knowledge is indispensable for guiding the behavior of GPT models. The extracted location descriptions can help disaster responders reach victims more quickly and may even save lives.
The PhD program of UB Geography has officially been classified as a STEM program under the category “Geography and Environmental Studies” (30.4401). According to the definition from the U.S. government, this category refers to a program “that focuses on interactions between people and the natural and built environments. Includes instruction in climate science, sustainability, environmental science and policy, research methods, geographic information systems (GIS), human geography, physical geography, remote sensing, and public policy.“
Being classified as STEM allows our program to encourage more students to participate in STEM-related research. International students graduating from our PhD program will also have 36 months OPT which allows them to further hone their research and technical skills in the U.S. after graduation. Our Master’s in GIS program is in STEM too. If you are interested in applying for the graduate programs of UB Geography, please apply at: https://www.buffalo.edu/cas/geography/about-us/admissions.html
In collaboration with Dr. Dane Taylor (Mathematics; PI), GeoAI lab receives a new NSF award that integrates big geospatial data, GeoAI methods, and network modeling to study anomalies in spatio-temporal multilayer networks encoding human mobility: https://www.nsf.gov/awardsearch/showAward?AWD_ID=2319250
Human mobility data from anonymized mobile phone devices are becoming increasingly available, enabling the detection of anomalies and potential threats from human movements. Due to the massive scale of data, it is difficult to detect anomalies that occur at different spatial and temporal resolutions. In addition, human movements are often associated with different categories of places (e.g., grocery stores and schools), and anomalies that are evident in one category may be obscure in another. This project will furnish new mathematical models and theories for encoding different categories of human movements as spatial-temporal multilayer networks. It will develop new algorithms to detect movement-pattern anomalies, which can help better forewarn anomalous events concerning national security. It will also advance our understanding of the impacts of anomalous and disastrous events on different categories of human movements. This project will contribute toward education by supporting graduate students and will facilitate interdisciplinary research between mathematics and geography. Open-source software tools will be implemented and publicly shared to help researchers and decision makers better predict, detect, and plan responses to future anomalous events.
To represent human movements in different categories and effectively detect the associated anomalies, the investigators will pursue three targets in this project. Target 1 will develop spatial-temporal multilayer network models encoding anonymized mobile phone location data of the United States. The network-structural properties associated with both normal and expected anomalous situations (e.g., holidays) will be extensively examined to develop a family of realistic generative models. Target 2 will build algorithms to detect and characterize movement-pattern anomalies based on the multilayer network models using unsupervised spectral algorithms. Random matrix theory will be employed to obtain theoretic guidelines for how to optimally preprocess data to maximize the “detectability” of anomalies at different spatial and temporal resolutions. Target 3 will apply the developed multilayer network models and anomaly detection algorithms to two case studies, to further refine our models and algorithms and to gain new insights into the evolutions and impacts of the two important events.
Dr. Hu receives the 2023 CPGIS Young Scholar Award from the International Association of Chinese Professionals in Geographic Information Sciences (CPGIS). He is very grateful for the support from his mentors, colleagues, and students. He looks forward to continuing contributing to GIScience in the coming years!
Lab member, Gaurish Lakhanpal, a high student who have been working with us as a research intern, will join the Department of Computer Science at Purdue University as a freshman this Fall semester. We are very proud of his achievement. Congratulations, Gaurish!!!